This is just a basic compilation of studies that explore the pathogenicity of the spike protein. The importance of this is to have an understanding of the spike protein pathology. This is of course needed as our current (Nov 2022) vaccines tell our bodies to produce it in order to elicit an immune response to the protein, and thus, develop antibodies for reducing the severity of Covid-19 infections.
Linked articles are not yet reviewed by site owner.
References
Almehdi, A.M., Khoder, G., Alchakee, A.S. et al. SARS-CoV-2 spike protein: pathogenesis, vaccines, and potential therapies. Infection 49, 855–876 (2021).
https://doi.org/10.1007/s15010-021-01677-8
Buzhdygan, T. P., DeOre, B. J., Baldwin-Leclair, A., Bullock, T. A., McGary, H. M., Khan, J. A., ... & Ramirez, S. H. (2020). The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood–brain barrier.
Neurobiology of disease, 146, 105131. doi:
10.1016/j.nbd.2020.105131
Dasgupta, S., & Bandyopadhyay, M. (2021). Molecular docking of SARS-COV-2 Spike epitope sequences identifies heterodimeric peptide-protein complex formation with human Zo-1, TLR8 and brain specific glial proteins. Medical hypotheses, 157, 110706. doi:
10.1016/j.mehy.2021.110706
He, M., Skaria, P., Kreutz, K., Chen, L., Hagemann, I. S., Carter, E. B., ... & Dehner, L. P. (2022). Histopathology of third trimester placenta from SARS-CoV-2-positive women. Fetal and pediatric pathology, 41(3), 403-412. doi:
10.1080/15513815.2020.1828517
Lei, Y., Zhang, J., Schiavon, C. R., He, M., Chen, L., Shen, H., ... & Shyy, J. Y. (2021). SARS-CoV-2 spike protein impairs endothelial function via downregulation of ACE 2. Circulation research, 128(9), 1323-1326. doi:
10.1161/CIRCRESAHA.121.318902
Luisetto, M., Almukthar, N., Tarro, G., Khan, F. A., Edbey, K., Hamid, G. A., ... & Latyshev, O. Y. (2021). Spike SARS-CoV-2 Protein as Procoagulant Factor and Vaccine Class Effect Hypotesys. Journal of Antimicrobial Agents, 7, 4. doi: N/A
Kim, E. S., Jeon, M. T., Kim, K. S., Lee, S., Kim, S., & Kim, D. G. (2021). Spike proteins of SARS-CoV-2 induce pathological changes in molecular delivery and metabolic function in the brain endothelial cells. Viruses, 13(10), 2021. doi:
10.3390/v13102021
Moghaddar, M., Radman, R., & Macreadie, I. (2021). Severity, pathogenicity and transmissibility of delta and lambda variants of SARS-CoV-2, toxicity of spike protein and possibilities for future prevention of COVID-19. Microorganisms, 9(10), 2167.
doi.org/10.3390/microorganisms9102167
Motwani, R., Deshmukh, V., Kumar, A., Kumari, C., Raza, K., & Krishna, H. (2022). Pathological involvement of placenta in COVID-19: a systematic review. Le infezioni in medicina, 30(2), 157–167.
https://doi.org/10.53854/liim-3002-1
Oh, J., Cho, W. H., Barcelon, E., Kim, K. H., Hong, J., & Lee, S. J. (2022). SARS-CoV-2 spike protein induces cognitive deficit and anxiety-like behavior in mouse via non-cell autonomous hippocampal neuronal death.
Scientific reports,
12(1), 5496. https://www.nature.com/articles/s41598-022-09410-7 https://www.biorxiv.org/content/10.1101/2023.04.04.535604v1
Pistollato, F., Petrillo, M., Clerbaux, L. A., Leoni, G., Ponti, J., Bogni, A., Brogna, C., Cristoni, S., Sanges, R., Mendoza-de Gyves, E., Fabbri, M., Querci, M., Soares, H., Munoz, A., Whelan, M., & Van de Eede, G. (2022). Effects of spike protein and toxin-like peptides found in COVID-19 patients on human 3D neuronal/glial model undergoing differentiation: Possible implications for SARS-CoV-2 impact on brain development. Reproductive toxicology (Elmsford, N.Y.), 111, 34–48.
https://doi.org/10.1016/j.reprotox.2022.04.011
Rhea, E. M., Logsdon, A. F., Hansen, K. M., Williams, L. M., Reed, M. J., Baumann, K. K., ... & Erickson, M. A. (2021). The S1 protein of SARS-CoV-2 crosses the blood–brain barrier in mice.
Nature neuroscience,
24(3), 368-378. doi:
10.1038/s41593-020-00771-8